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Abstract

A vibration control scheme integrating a passive mass–spring resonator and a linear actuator is developed. A control

algorithm is devised to convert the actuator into an additional set of virtual mass–spring structure of programmable

characteristic frequency. The relative motion between the primary body and the reaction mass is measured, as well as the

acceleration of the reaction mass. This hybrid dynamic vibration absorber is capable of neutralizing a harmonic

disturbance regardless of the detailed dynamics of the primary structure and other passive elements. Stability analysis leads

to a simple, explicit stability criterion. Distribution of the counter-disturbance force between the active and passive devices

is analyzed, and the transient performance is also investigated. Real-time experiments as well as numerical simulations are

conducted to confirm the effectiveness of the proposed scheme.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a novel vibration control method combining a passive resonator and a linear actuator.
In parallel to a mechanical spring, the linear actuator acts on the primary body against a reaction mass.
Thanks to the active device, characteristic frequency of the hybrid dynamic vibration absorber (hybrid DVA)
is tunable by software and the transient performance can be improved. On the other hand, the passive spring
helps share the counter-disturbance effort so that the actuator’s size and the consumed power can be
minimized.

Such a hybrid vibration absorber has been an active research topic. Earlier control methods for the active
device include classical full-state feedback controls and fuzzy logic and neural networks (see Ref. [1] for a
review). A delayed resonator using a time-delayed position feedback is presented in Ref. [2]. In Ref. [3], the
delayed resonator and a PD control are compared experimentally, both measuring relative motions between
the reaction mass and the primary body. In Ref. [4] a procedure for pole/zero placement is developed also
measuring feedback at coupling point. A band-pass absorber that widens the absorption range is proposed [5]
using a band-stop-filter transfer function. In Ref. [6] a notch filter is adopted in an output feedback control.
For implementation various types of actuators have been investigated, including linear motors with air springs
[7], electromagnetic actuators [3], piezoceramic inertial actuators [8], electrohydraulic actuators [9] and linear
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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voice-coil motors [6]. In Ref. [10] a two reaction-mass resonator is proposed and is shown to be more efficient
than the one reaction-mass device in terms of control efforts. Besides the original purpose of neutralizing a
harmonic disturbance, the hybrid vibration control technique has also been applied to vibration isolations
[9,11,12], and active vehicle suspensions [13].

In this paper a control algorithm emulating the dynamics of a spring–mass mechanism is devised. The
virtual passive device acts as an ideal DVA of which the characteristic frequency can be adjusted by tuning the
control gains. Compared to the existing control techniques, the proposed scheme directly mimics a DVA
independent of the passive elements. In other words, it is capable of neutralizing a harmonic disturbance
regardless of the detailed dynamics of the primary structure and the parameters of the passive devices (springs
and/or dampers) connecting the reaction mass and the primary body. The overall system can be visualized by
an equivalent mechanical structure consisting of passive and virtual passive elements and a state-dependent
force. Such a method resembles the virtual passive approach in Refs. [14,15], where the actuators are held to
an inertial frame rather than acting against a free-moving reaction mass. This ‘‘free-ended’’ configuration has
the merits of eliminating vibrations on the spot without transferring the oscillations to the surroundings
through the ground base. Unlike the ground-based systems in Refs. [14,15], however, stability is a nontrivial
issue for this free-ended scheme because of interactions between the active device and the passive resonator.
An explicit stability criterion will be derived in this paper.

The rest of the paper is arranged as follows. Section 2 describes the system under consideration. Section 3
presents the physically motivated control algorithm. It is shown how to visualize the closed-loop system as an
equivalent mechanical structure. Stability analysis is conducted in Section 4, where a simple, closed-form
stability condition is derived with a physical interpretation. Section 5 analyzes the distribution of counter-
disturbance force between the passive and active elements, and investigates the transient performance.
Numerical simulations are also conducted in this section. Finally experimental results are presented in
Section 5 followed by a conclusion.
2. System description

Fig. 1 shows a conventional DVA for a flexible structure subjected to a harmonic disturbance. The vibration
absorber includes a mass–spring pair with a characteristic frequency close to that of the disturbance. It
contains an additional damper that helps avoid resonance at other frequencies and raise the effective
bandwidth of operations. The damper is essential when the original structure is lightly damped. However, the
damper also makes it impossible to achieve complete neutralization of a persistent, harmonic disturbance.

Fig. 2 is a sketch of the hybrid DVA under consideration. It contains a linear actuator embedded in the
reaction mass in parallel to the mechanical spring and damper. The linear actuator will be programmed to
emulate an additional combination of mechanical spring, damper, and mass via a control law. The feedback
signals are the relative displacement and velocity between the primary body and the reaction mass, and the
Fig. 1. A structure subjected to cyclic disturbances (up) and one equipped with a dynamic vibration absorber (down).
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Fig. 3. Simplified model of the control plant.
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acceleration of the reaction mass. The sensors include a linear variable differential transformer (LVDT)
installed on the linear actuator and an accelerometer glued to the reaction mass. In implementation the
relative velocity can be approximated by numerically differentiating the displacement measured by the LVDT.

By simplifying the flexible plate to a mass–spring structure, the system with the hybrid vibration-control
mechanism can be modeled as in Fig. 3. The governing equations are

m0 €yþ k0yþ k1ðy� xÞ þ bð _y� _xÞ ¼ uþ d, ð1Þ

m1 €xþ k1ðx� yÞ þ bð _x� _yÞ ¼ �u, ð2Þ

d ¼ a sinðo0tþ fÞ, ð3Þ

where y is the displacement of the primary body, x is the displacement of the reaction mass, m0 and m1 are
respectively the inertia of the primary body and the inertia of the reaction mass, k0 and k1 are the spring
constants, b is the damping coefficient, u is the control force exerted by the linear actuator, and d is the
external disturbing force of radian frequency o0. The phase f and amplitude a of the disturbance are
uncertain constants.

3. Feedback control and the equivalent system

The control law is devised to be

u ¼ kað~z� ~yÞ � ba
_~yþ k̂1 ~y, ð4Þ

ma
€~z ¼ �kað~z� ~yÞ �ma €x, ð5Þ
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where

~y ¼ y� x. (6)

All parameters in Eqs. (4) and (5) are constants with

ka40; ma40; ba þ b40; k1 � k̂140, (7)

and

ka

ma

¼ o2
0. (8)

Note that ~y is the displacement of the primary body relative to the reaction mass and is measurable by the
LVDT. The acceleration €x is measured by the accelerometer glued to the reaction mass, and the variable ~z will
be calculated and updated in the controller.

To explore the physical implication of the control law of Eqs. (4) and (5), we define z ¼ ~zþ €x, or

~z ¼ z� €x. (9)

Substitution of Eqs. (6) and (9) into Eqs. (4) and (5) yields

u ¼ kaðz� yÞ � bað _y� _xÞ þ k̂1ðy� xÞ, ð10Þ

ma €z ¼ kaðy� zÞ. ð11Þ

Substitution of Eqs. (10) and (11) back into Eqs. (1) and (2) leads to

m0 €yþ k0yþ ~k1ðy� xÞ þ ~bð _y� _xÞ þ kaðy� zÞ ¼ d, ð12Þ

m1 €xþ ~k1ðx� yÞ þ ~bð _x� _yÞ ¼ kaðy� zÞ, ð13Þ

ma €zþ kaðz� yÞ ¼ 0, ð14Þ

where ~k1 ¼ k1 � k̂1 and ~b ¼ ba þ b.
Eqs. (12)–(14) turn out to be the governing equations of the system shown in Fig. 4. It is seen that besides

the reaction mass, a mass–spring pair (ma � ka) of characteristic frequency o0 (Eq. (8)) are added to the
system. The stiffness k1 of the original spring is modified to ~k1, and the damping coefficient of the dashpot is
changed to ~b. These pseudo-mechanical elements are emulated by the linear motor via the feedback law of
Eqs. (4) and (5); they are hence called virtual passive elements. The ma � ka pair acts as an ideal vibration
absorber for a disturbance of frequency o0, as long as the system is stable. The virtual dashpot provides
k0 

~
k1

m0 

d

m1 

b
~

ma

ka
ka (y-z) 

z

Fig. 4. A mechanical structure equivalent to the closed-loop system of Eqs. (12)–(14).
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necessary damping to stabilize the system. Note also the presence of the state-dependent force, kaðy� zÞ, on
the reaction mass. This interaction between the virtual mass and the reaction mass imposes a constraint on the
maximum allowable value of ma, as will be investigated later.

The transfer function from the disturbance to the displacement of the primary body is derived to be

Y ðsÞ

DðsÞ
¼

ðm1s
2 þ ~bsþ ~k1Þðmas2 þ kaÞ

a0s6 þ a1s5 þ a2s4 þ a3s3 þ a4s2 þ a5sþ a6
, (15)

where

a0 ¼ m0m1ma, ð16Þ

a1 ¼
~bmaðm0 þm1Þ, ð17Þ

a2 ¼ m1maðk0 þ ka þ
~k1Þ þm0ðm1ka þma

~k1Þ, ð18Þ

a3 ¼
~bðkaðm0 þm1Þ þ k0maÞ, ð19Þ

a4 ¼ kam1ðk0 þ
~k1Þ þ

~k1ðm0ka þ k0maÞ, ð20Þ

a5 ¼
~bk0ka, ð21Þ

a6 ¼ k0
~k1ka. ð22Þ

Note the existence of a pair of zeros at �io0 in Eq. (15). The zeros are independent of the parameters of the
passive elements. This verifies that a harmonic disturbance of this frequency will be blocked out in steady state
if the system is stable.

4. Stability criteria

To reduce the number of variables in the stability analysis, a set of dimensionless (or normalized) variables
are defined

m�a ¼ ma=m0,

m�1 ¼ m1=m0,

k�a ¼ ka=k0.

The stability criterion is stated as follows.

Theorem 1. The closed-loop system of Eqs. (1)–(6), given the constraint of Eq. (7), is stable if and

only if

m�ao
m�1k�að1þm�1Þ

k�a þ ð1þ k�aÞm
�
1

. (23)

Proof. The proof will be conducted using Routh Stability Criteria. The Routh array from Eqs. (15)–(22) is
established as follows:

r11ð¼ a0Þ; r12ð¼ a2Þ; r13ð¼ a4Þ; r14ð¼ a6Þ,

r21ð¼ a1Þ; r22ð¼ a3Þ; r23ð¼ a5Þ,

r31ð¼ a1a2 � a0a3Þ; r32ð¼ a1a4 � a0a5Þ; r33ð¼ a1a6Þ,

r41ð¼ r31a3 � a1r32Þ; r42ð¼ r31a5 � a1r33Þ,

r51ð¼ r41r32 � r31r42Þ; r52ð¼ r41r33Þ,

r61ð¼ r51r42 � r41r52Þ. ð24Þ
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The terms r11 and r21 in the Routh array are always positive. The remaining terms of the first column are
computed and arranged to be

r31 ¼ ~bð ~k1m
2
0 þ ðka þ 2 ~k1Þm0m1 þ ðk0 þ ka þ

~k1Þm
2
1Þm

2
a,

r41 ¼ ~b2m2
am1ðk

2
am2

0 þ k0kam0ma þ ð2k2
am0 þ ðk

2
0 þ k0kaÞmaÞm1 þ k2

am2
1Þ,

r51 ¼ c1 þ c2d,

r61 ¼ c3d,

where c1; c2; c3 are positive as detailed below.

c1 ¼ c11ðc12 þ c13Þ,

where

c11 ¼ ~k1
~b3m3

am1ðm0 þm1Þ,

c12 ¼ k3
am3

0 þ k0k
2
am2

0ma þ k2
0kam0m

2
a,

c13 ¼ ð3k3
am2

0 þ 2k0k2
am0ma þ ðk

3
0 þ k2

0kaÞm
2
aÞm1 þ ð3k3

am0 þ k0k
2
amaÞm

2
1 þ k3

am3
1.

Moreover,

c2 ¼ ~b3m3
ak0m

2
1ðm0 þm1Þk

2
a,

c3 ¼ ðm0 þm1Þð
~k1m2

0 þ ðka þ 2 ~k1Þm0m1 þ ðk0 þ ka þ
~k1Þm

2
1Þk

2
0m

2
1k

3
a
~b5m5

a

and

d ¼ �kam0ma þ ðkam0 þ ð�k0 � kaÞmaÞm1 þ kam2
1. (25)

It is seen that r31 and r41 are positive regardless of the magnitudes of the parameters. Stability therefore
depends on the signs of r51 and r61. Since c1; c2, and c3 are positive, it follows that both r5140 and r6140 if and
only if d40. From Eq. (25) we have

mao
kam0m1 þ kam2

1

kam0 þ ðk0 þ kaÞm1
. (26)

Eq. (23) is directly from Eq. (26) using the normalized variables. &

Note that the key step in the proof is to separate r51 into two groups: The first group (c1) involves ~k1 and is
always positive. The second group is factored to get d. It turns out that r61 also contains the factor of d.
Manipulation of the lengthy and tedious algebra is helped by a symbolic mathematics program JACAL, which
is a free software and is similar to Maple or the symbolic math toolbox of Matlab.

It is interesting to note from the stability criterion that the system stability is independent of the magnitudes
of ~k1 and ~b, as long as they are positive. By rearranging terms the criterion can be expressed to be

m�aom�1
k�að1þm�1Þ

k�að1þm�1Þ þm�1
. (27)

Eq. (27) shows that m�a must be smaller than m�1 for all k�a. In other words, for the system to be stable it is
required that the virtual mass be lighter than the real reaction mass. If k�a is much larger than 1, the allowable
upper bound for m�a tends to m�1. The maximum allowable values for m�a versus k�a are plotted and shown in
Fig. 5 for a set of m�1.

Note that the above analyses have been based on an undamped primary structure. The stability condition
will be much more complicated and may not have a closed form if the structural damping is taken into
account. Since passive damping has a stabilizing effect, however, the stability criterion obtained above is



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40
0

1

2

m
*

k*

m* = 2.0

1.5

0.5

a

1 

m* = 1.51 

m* = 1.01 

m* = 0.51 

a

Fig. 5. Maximum allowable m�a versus k�a. Note that the virtual mass must be lighter than the reaction mass.

0 5 10 15 20 25 30 35 40
0

1

b0 / b = 0

0 5 10 15 20 25 30 35 40
0

0.5

1

m
*

m
*

0.1 

0.2 

0.5 

0.1 
0.2 

0.5 

~

b0 / b = 0~

k*

1.5

0.5

a
a

(a)

(b) a 

Fig. 6. Stability boundary curves for b0= ~b varying from 0 to 0.5: (a) m�1 ¼ 0:5; (b) m�1 ¼ 1.

S.-T. Wu et al. / Journal of Sound and Vibration 299 (2007) 247–260 253
expected to relax if a damper is added between the primary body and the ground, i.e., if Eq. (1) is modified
with an additional damping term to be

m0 €yþ k0yþ k1ðy� xÞ þ bð _y� _xÞ þ b0 _y ¼ uþ d, (28)
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where b0 is the damping coefficient of the additional damper. Fig. 6 shows the stability criteria for b0= ~b
varying from 0 to 0.5, given ~k1=k0 ¼ 1; ~b=

ffiffiffiffiffiffiffiffiffiffiffi
~k1m1

p
¼ 0:5. The curves are obtained as follows:
1.
F

Set ka ¼ 0.

2.
 Repeatedly calculate the poles of the closed-loop system with a gradual increment of ma from 0 until the

first unstable pole is encountered; register the corresponding value of ma.

3.
 Increase ka, and repeat step 2.
Note that unlike the situations with b0 ¼ 0, the stability boundary curve corresponding to a positive b0= ~b
differs for a different combination of ~k1=k0 and ~b=

ffiffiffiffiffiffiffiffiffiffiffi
~k1m1

p
, two dimensionless groups. However, extensive

numerical calculations indicate the same tendency as shown in Fig. 6. That is, the allowable range for ka and
ma is enlarged as b0 is increased from 0. The simple stability criterion of Eq. (27) may therefore serve as a
sufficient (but not necessary) stability condition in the practical situations where structural damping is present.
5. Control efforts and transient performance

As mentioned earlier, the mechanical spring k1 is intended to share the counter-disturbance effort with the
linear actuator. Following is an analysis on the distribution of the counter-disturbance force between the
passive and the active elements.

Control efforts in steady state: Since y and its time derivatives tend to zero, the terms y and €y in Eqs. (1) and
(2) vanish in steady state. From Eq. (2), in steady state we have

u ¼ �ðm1 €xþ k1xþ b _xÞ. (29)

Summing up Eqs. (1) and (2) yields

d ¼ �m1 €x. (30)

Let ju=dj represent the amplitude ratio of the active control effort to the disturbance in steady
state. Since x is a sinusoidal function of frequency o0 in steady state, we obtain from Eqs. (29)
0 1
0

1

2

2.5

1.5

0.5

0.5 1.5
�1
�0

u
d

k1 x
d

ig. 7. Active control effort (solid line) and passive spring force (dashed line) in steady state, neglecting the passive damper (z ¼ 0).
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and (30) that

u

d

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�m1o2

0 þ k1Þ
2
þ b2o2

0

q
m1o2

0

. (31)
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Fig. 8. Simulation results—time response for ~k1 ¼ 1150.
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Denote o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
and z ¼ ð1=2Þb=

ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p
, the damping ratio of the passive absorber. Eq. (31) can be

written to be

u

d

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o2
1

o2
0

� �2

þ 4z2
o2

1

o2
0

s
. (32)

Similarly, the amplitude ratio of the passive spring force to the disturbance can be expressed to be

k1x

d

����
���� ¼ o2

1

o2
0

. (33)

Fig. 7 shows the curves of ju=dj and jk1x=dj versus o1=o0 for z ¼ 0. It is seen that if the natural frequency of
the k1 �m1 pair coincides with that of the disturbance, i.e., o1 ¼ o0, the control effort from the active device
vanishes in steady state. Note, however, in this particular situation the active device is still useful because it
helps stabilize the system by adding virtual damping (ba) to the system without compromising the steady-state
performance. As o1 deviates away from o0, the proportion of the control effort increases. The magnitude of u

is equal to that of d if o1 ¼
ffiffiffi
2
p

o0. Beyond this point the control effort exceeds the disturbance. In other
words, if the passive spring is too stiff it is not a help but a ‘‘burden’’ to the active device.

Transient performance: The steady-state response is independent of k̂1, which adjusts the effective stiffness
between the reaction mass and the primary body. The value of ~k1 ð¼ k1 �

~k1Þ, however, has a significant effect
on the transient performance. Figs. 8 and 9 compare the responses of the closed-loop system with different
k̂1 by computer simulations. In the simulations, the frequency of disturbance is 3.1Hz (o0 ¼ 19:48 rad=s).
The parameters of the system are: m0 ¼ 0:6 kg, k0 ¼ 296N=m, m1 ¼ 1:34 kg, k1 ¼ 1150N=m, b ¼ 0. The
controller’s parameters are: ma ¼ 0:5, ka ¼ 189:74, ba ¼ 18 for both simulations. These parameters are chosen
to be consistent with the real-time experiments presented later. In Fig. 8, k̂1 is set to be 0 ( ~k1 ¼ 1150), while in
Fig. 9 it is set to be 950 so that ~k1 is reduced to 200. It is seen that the case with smaller ~k1 has much faster
response. Also note that in steady state both cases have the same control efforts regardless of the different k̂1.

Fig. 10 compares the frequency responses for stiff and soft ~k1. It is seen that there is a significant resonant
point (peak) for the case with a stiff effective spring. This can be explained physically by the fact that the stiff
spring results in smaller damping ratio: The damping effect diminishes if the spring in parallel to the dashpot is
too stiff. Since the value of k1 is chosen to minimize the steady-state active control effort, one may use k̂1 to
adjust the effective stiffness for better transient performance.
100

-50

0

D
b

102
-150

0

D
b

-150

-50

-100

100

-100

101 102 103

103

rad/sec 

101

Fig. 10. Frequency responses for different ~k1: ~k1 ¼ 1150 (up) and ~k1 ¼ 200 (down).
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Design issues: Considerations in choosing k1 and k̂1 are given above. Factors in the determination of ma

(and consequently ka) will be discussed in the following. In general, larger ma yields faster transient response
since ka increases with ma for a given o0 (ka ¼ mao2

0), and larger ka in turn means higher gain in the feed-
back algorithm. However, besides the constraint of the power available from the linear actuator, stability
must be taken into account in determining the size of the virtual mass. In the above simulation,
k�a ¼ 189:74=296 ¼ 0:641;m�1 ¼ 1:34=0:6 ¼ 2:23, and m�a ¼ 0:5=0:6 ¼ 0:833, which is below the critical value
dictated by Eq. (23): 2:23� 0:641� ð1þ 2:23Þ=ð0:641þ ð1þ 0:641Þ � 2:23Þ ¼ 1:074. Stability is therefore
ensured for the closed-loop system. This example shows that parameters of the primary structure can be
uncertain to an extent but their bounds must be known, so that stability condition can be checked. Numerical
simulations on the nominal system are also helpful in fine-tuning the controller’s parameters before real-time
implementation.
Linear actuator
with LVDT

Accelerometer 1

Hinged 

Accelerometer 2 

Linear guide 

Linear actuator 
with LVDT

Accelerometer 1 

Linear spring 

Flexible plate 

Rotary motor 

Linear spring

Flexible plate Accelerometer 2

Rotary motor 

Linear guide

Fig. 11. Experimental apparatus: the functional sketch (up) and the photo (down). Accelerometer 2 is installed to evaluate the response of

the flexible plate.
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6. Experimental results

Fig. 11 shows the picture of the experimental system for real-time testing. The flexible plate is hinged at both
ends. A rotary motor with an eccentric load is attached to the center of the flexible plate. It is set to rotate at a
constant speed (3.1 revolutions/s), imposing a harmonic disturbance to the plate. The linear actuator is a
moving-magnet voice-coil motor; its shaft is attached to the flexible plate and its body is connected to the plate
via a mechanical spring (k1). An accelerometer is glued to the body of the actuator for the feedback
controller. Another accelerometer is glued to the center of the flexible plate to monitor vibrations before
and after control activation. The flexible plate is modeled as a mass–spring structure (m0 � k0) and the body
of the linear actuator functions as the reaction mass (m1). Parameters of the system are as given in the
previous section.

Fig. 12 shows the time response of the closed-loop system under a discrete version of Eqs. (4) and (5). The
parameters of the controller are as follows: ma ¼ 0:5, ka ¼ 189:74, b ¼ 18, and k̂1 ¼ 0. The controller is
activated after 2 s. It is seen that oscillations are significantly reduced by the control action. The transient time
is much shorter than in the simulation result of Fig. 8. This can be explained by the presence of structural
damping and friction in the flexible plate, which are not included in the simulation model. Unlike the
simulation, however, there are some residual vibrations in steady state. These oscillations can be attributed to
the high-frequency harmonics excited by the rotary motor, as analyzed below.
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Fig. 13. Spectrum of €y without control (up) and the amplified picture (down). Note the presence of higher harmonics.
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Figs. 13 and 14 compare the spectrum of the accelerations at the midsection of the flexible plate before and
after control, obtained by a fast Fourier transform (FFT) routine on the time-response data. It is seen that the
component at 3.1Hz is drastically reduced. The residual oscillations are mostly due to the second harmonic
(6.2Hz). This is consistent with the fact that the active absorber is targeted at 3.1Hz.

7. Conclusions

A hybrid DVA representable by an equivalent mechanical structure with a state-dependent force is
developed. A simple, closed-form stability criterion is derived. Stability is ensured if the value of the virtual
mass (m�a) lies below an upper bound depending on m�1 and k�a. The hybrid DVA is capable of neutralizing the
harmonic disturbance regardless of the detailed parameters of the passive elements, although the bounds on
the inertia and stiffness of the primary structure must be available for checking the stability condition in
advance. Distribution of the counter-disturbance force between the passive and active devices is also analyzed.
Both numerical simulations and real-time experiments confirm the effectiveness of the proposed method.

Acknowldgments

This research is supported by the National Science Council, Taiwan, ROC, under Grant number NSC93-
2218-E-2214-005.
References

[1] J.Q. Sun, M.R. Jolly, M.A. Norris, Passive, adaptive and active tuned vibration absorbers—a survey, ASME Journal of Dynamic

Systems, Measurement and Control 117 (1995) 234–242.

[2] N. Olgac, B. Holm-Hansen, A novel active vibration absorption technique: delayed resonator, Journal of Sound and Vibration 176

(1994) 93–104.

[3] H. Elmali, M. Renzulli, N. Olgac, Experimental comparison of delayed resonator and PD controlled vibration absorbers using

electromagnetic actuators, ASME Journal of Dynamic Systems, Measurement, and Control 122 (2000) 514–520.

[4] J. Yuan, Hybrid dynamic vibration absorption by zero/pole placement, ASME Journal of Vibration and Acoustics 122 (2000) 466–469.

[5] D. Filipovi, D. Schroder, Bandpass vibration absorber, Journal of Sound and Vibration 214 (3) (1998) 553–566.

[6] Y.-D. Chen, C.-C. Fuh, P.-C. Tung, Application of voice coil motors in active dynamic vibration absorbers, IEEE Transactions on

Magnetics 41 (3) (2005) 1149–1154.

[7] M. Yasuda, R. Gu, O. Nishihara, H. Matsuhisa, K. Ukai, M. Kondo, Development of anti-resonance enforced active vibration

absorber system, JSME International Journal Series C 39 (3) (1996) 464–469.

[8] G.A. Lesieutre, R. Rusovici, G.H. Koopmann, J.J. Dosch, Modeling and characterization of a piezoceramic inertial actuator, Journal

of Sound and Vibration 261 (1) (2003) 93–107.

[9] Y. Zhang, A. Alleyne, A simple novel approach to active vibration isolation with electrohydraulic actuation, Journal of Dynamic

Systems, Measurement, and Control 125 (2003) 125–128.

[10] R.A. Burdisso, J.D. Heilmann, A new dual-reaction mass dynamic vibration absorber actuator for active vibration control, Journal of

Sound and Vibration 214 (5) (1998) 817–831.

[11] T. Tantanawat, Z. Li, S. Kota, Application of compliant mechanisms to active vibration isolation systems, Proceedings of DETC

2004, International Design Engineering Technical Conference, Salt Lake City, Utah, September 28–October 2, 2004.

[12] Y. Du, R.A. Burdisso, E. Nikolaidis, Control of internal resonances in vibration isolators using passive and hybrid dynamic vibration

absorbers, Journal of Sound and Vibration 286 (2005) 697–727.

[13] S.-J. Huang, W.-C. Lin, Adaptive fuzzy controller with sliding surface for vehicle suspension control, IEEE Transactions on Fuzzy

Systems 11 (4) (2003) 550–559.

[14] S.-T. Wu, Virtual vibration absorbers with inherent damping, AIAA Journal of Guidance, Dynamics, and Control 25 (4) (2002)

644–650.

[15] S.-T. Wu, Y.-C. Chuang, Output regulation of robot manipulators with a constantly revolving arm, IEEE Transactions on Robotics

and Automation 19 (6) (2003) 1002–1006.


	Hybrid vibration absorber with virtual passive devices
	Introduction
	System description
	Feedback control and the equivalent system
	Stability criteria
	Control efforts and transient performance
	Experimental results
	Conclusions
	Acknowldgments
	References


